摘要

This research is motivated by the issue associated with high frequency combustion instability. Large eddy simulation was performed to investigate spontaneous combustion instability in an air/LO2/C2H5OH tri-propellant air heater. The simulation predicts self-excited transverse oscillations. Overall behavior of combustion instability including pressure time histories, mode shapes, Rayleigh index and unsteady response of the injector were studied in detail. Special emphasis was given to the flame behavior, droplet trajectories, pressure evolutions, and formation of large-scale vortical structures during combustion instability in present air heater. Furthermore, in contrast to previous investigations, a new process is identified in the simulation that may feed energy into the acoustic mode and drive combustion instability.