摘要

The gate oxide layer and parasitic bipolar junction transistor are inherent elements of vertical double-diffused power metal-oxide-semiconductor field-effect transistors (MOSFETs). Single-event gate rupture (SEGR) and single-event burnout (SEB) may be triggered by penetration of energetic ions through sensitive regions of such MOSFET devices when used in space environments. Based on the recombination mechanism in a heavily doped P+ buried layer and the higher breakdown voltage when using a thick oxide layer, a new structure for power MOSFETs that are irradiation hardened against SEGR and SEB was developed in this work, based on three typical characteristics: an N+ buried layer, a P+ buried layer, and a thick oxide above the neck. The results reveal that the safe operation region of such an N-channel power MOSFET in a single-event irradiation environment is enhanced by 300 % for a linear energy transfer value of 98 MeV cm(2)/mg. Such structures could be widely used when designing single-event irradiation-hardened power MOSFETs.