摘要

We study tunneling of a Bose-Einstein condensates confined in a effective double-well potential (a single well with a spatially magnetic modulated scattering length, actually), called pseudo double-well trap, in which the interaction of atoms characterized by the s-wave scattering length a (s) can be widely tuned with a magnetic-field Feshbach resonance. As a result, corresponding to different nonlinear parameters, the energy levels of the nonlinear Schrodinger equation can have complex structures in their dependence on the bias between the wells. We discuss the emergence of looped levels, which lead to a breakdown of adiabaticity that the Landau-Zener transition probability does not vanish even in the adiabatic limit. Moreover, we also find that the Landau-Zener tunneling in the pseudo trap show many striking properties distinguished from that of the real trap model (where the barrier is created by the external potential). Possible experimental observation in an opticallyinduced photonic lattices in a photorefractive material is suggested.