摘要

2-O-D-Glucopyranosyl-L-ascorbic acid (AA-2G), a stable L-ascorbic acid derivative, is usually synthesized by cyclodextrin glycosyltransferase (CGTase), which contains nine substrate-binding subsites (from +2 to -7). In this study, iterative saturation mutagenesis (ISM) was performed on the -6 subsite residues (Y167, G179, G180, and N193) in the CGTase from Paenibacillus macerans to improve its specificity for maltodextrin, which is a cheap and easily soluble glycosyl donor for AA-2G synthesis. Site saturation mutagenesis of four sites-Y167, G179, G180, and N193-was first performed and revealed that four mutants-Y167S, G179R, N193R, and G180R-produced AA-2G yields higher than those of other mutant and wild-type CGTases. ISM was then conducted with the best positive mutant as a template. Under optimal conditions, mutant Y167S/G179K/N193R/G180R produced the highest AA-2G titer of 2.12 g/liter, which was 84% higher than that (1.15 g/liter) produced by the wild-type CGTase. Kinetics analysis of AA-2G synthesis using mutant CGTases confirmed the enhanced maltodextrin specificity and showed that compared to the wild-type CGTase, the mutants had no cyclization activity but high hydrolysis and disproportionation activities. A possible mechanism for the enhanced substrate specificity was also analyzed through structure modeling of the mutant and wild-type CGTases. These results indicated that the -6 subsite played crucial roles in the substrate binding and catalytic reactions of CGTase and that the obtained CGTase mutants, especially Y167S/G179K/N193R/G180R, are promising starting points for further development through protein engineering.