摘要

Demonstrative experiments on the variation patterns of the position, angle, and intensity of shock wave are presented. Different means Of aerodynamic actuation, such as variations of the distance between discharge channels, the number of discharge channels, the DC discharge voltage, the angle of ramp, and the application of magnetic field, in a supersonic flow of M = 2.2 are employed. Results of both the schlieren and pressure test indicated that when the plasma aerodynamic actuation is applied, the starting point of the shock wave was shifted 1 mm to 8 mm upstream on average, the shock, wave angle was reduced 4% to 8% on average, and the shock wave intensity was decreased by 8% to 26%. The local plasma aerodynamic actuation could generate an extrusive plasma layer with high temperature and pressure. This plasma layer caused an upstream-shift of the separating point of the boundary layer, which changed the structure of the original shock wave. Moreover, in a simulation study, the plasma aerodynamic actuation was simplified as a thermal source term added to the Navier-Stokes equations, after all, the results obtained showed consistency with the experimental results.