摘要

In whole-core CT imaging, scanned data corresponding to the central portion of a cylindrical core often suffer from photon starvation, because increasing photon flux will cause overflow on some detector units under the restriction of detector dynamic range. Either photon starvation or data overflow will lead to increased noise or severe artifacts in the reconstructed CT image. In addition, cupping shaped beam hardening artifacts also appear in the whole-core CT image. In this paper, we present a method to design an attenuator for cone beam whole-core CT, which not only reduces the dynamic range requirement for high SNR data scanning, but also corrects beam hardening artifacts. Both simulation and real data are employed to verify our design method.