摘要

We propose an effective person reidentification method based on normalized distance aggregation of discriminative features. Our framework is built on the integration of three high-performance discriminative feature extraction models, including local maximal occurrence (LOMO), feature fusion net (FFN), and a concatenation of LOMO and FFN called LOMO-FFN, through two fast and discriminant metric learning models, i.e., cross-view quadratic discriminant analysis (XQDA) and large-scale similarity learning (LSSL). More specifically, we first represent all the cross-view person images using LOMO, FFN, and LOMO-FFN, respectively, and then apply each extracted feature representation to train XQDA and LSSL, respectively, to obtain the optimized individual cross-view distance metric. Finally, the cross-view person matching is computed as the sum of the optimized individual cross-view distance metric through the min-max normalization. Experimental results have shown the effectiveness of the proposed algorithm on three challenging datasets (VIPeR, PRID450s, and CUHK01).