摘要

A multi-generational approach was used to investigate the persistent effects of a sub-lethal dose of spinosad in Plutella xylostella. The susceptibility of various sub-populations of P. xylostella to spinosad and the effects of the insecticide on the gene expression of gamma-aminobutyric acid receptor (GABAR) were determined. The results of a leaf dip bioassay showed that the sensitivity of P. xylostella to spinosad decreased across generations. The sub-strains had been previously selected based on a determined LC25 of spinosad. Considering that GABA-gated chloride channels are the primary targets of spinosad, the cDNA of P. xylostella was used to clone GABAR alpha by using reverse transcription-polymerase chain reaction (RT-PCR). The mature peptide cDNA was 1477-bp long and contained a 1449-bp open reading frame encoding a protein of 483 amino acids. The resulting amino acid sequence was used to generate a neighbor-joining dendrogram, and homology search was conducted using NCBI BLAST. The protein had high similarity with the known GABAR sequence from P. xylostella. Subsequent semi-quantitative RT-PCR and real-time PCR analyses indicated that the GABAR transcript levels in the spinosad-resistant strain (RR, 145.82-fold) and in Sub1 strain (selected with LC25 spinosad for one generation) were the highest, followed by those in the spinosad-susceptible strain, the Sub10 strain (selected for ten generations), and the Sub5 strain (selected for five generations). This multi-generational study found significant correlations between spinosad susceptibility and GABAR gene expression, providing insights into the long-term effects of sub-lethal insecticide exposure and its potential to lead to the development of insecticide-resistant insect populations.