摘要

Mitogen-activated protein kinases (MAPKs) are fundamental components of the plant innate immune system. MPK3 and MPK6 are Arabidopsis (Arabidopsis thaliana) MAPKs activated by pathogens and elicitors such as oligogalacturonides (OGs), which function as damage-associated molecular patterns, and flg22, a well-known microbe-associated molecular pattern. However, the specific contribution of MPK3 and MPK6 to the regulation of elicitor-induced defense responses is not completely defined. In this work we have investigated the roles played by these MAPKs in elicitor-induced resistance against the fungal pathogen Botrytis cinerea. Analysis of single mapk mutants revealed that lack of MPK3 increases basal susceptibility to the fungus, as previously reported, but does not significantly affect elicitor-induced resistance. Instead, lack of MPK6 has no effect on basal resistance but suppresses OG- and flg22-induced resistance to B. cinerea. Overexpression of the AP2C1 phosphatase leads to impaired OG- and flg22-induced phosphorylation of both MPK3 and MPK6, and to phenotypes that recapitulate those of the single mapk mutants. These data indicate that OG- and flg22-induced defense responses effective against B. cinerea are mainly dependent on MAPKs, with a greater contribution of MPK6.

  • 出版日期2011-10