摘要

It has been reported that phosphorus deprivation can induce beta-carotene and triacylglycerol accumulation in Dunaliella salina cells. In this study, we aimed to elucidate the metabolic responses of D. salina to phosphorus deprivation, using gas chromatography-mass spectrometry as analytical tool. A total of 79 metabolites were identified in cells cultured in either phosphorus-deprived or replete media, including 18 amino acids, 28 other acids, 16 sugars, 12 alcohols, and 5 amino compounds. Hierarchical clustering was used to sort these metabolites into three groups with different change trends. Most amino acids and sugars, including the abiotic stress-related metabolites lysine, proline, trehalose, talose, and tagatose, increased, whereas N,N-dimethylglycine, L-serine, D-erythro-pentose, and D-ribose remained constant upon phosphorus deprivation. Multivariate statistical partial least squares and principal component analyses indicated that metabolite profiles were significantly changed upon phosphorus deprivation, and 18 biomarkers which can be used to distinguish the two culture conditions were identified. Stress-related polyamines such as cadaverine, antioxidants such as L-ascorbic acid, and L-methionine, as well as the osmolytes proline, mannitol, and arabitol, also increased. Furthermore, phosphorus deprivation resulted in increases of both saturated and unsaturated fatty acids in D. salina cells. These results suggest that phosphorus deprivation triggers comprehensive metabolic responses in D. salina which may be useful for future bioprocesses.