A novel bi-layer ascending release osmotic pump tablet: In vitro investigation and in vivo investigation in pharmacokinetic study and IVIVC evaluation

作者:Xu, Heming; Li, Zhao; Pan, Hao; Zhang, Zhihong; Liu, Dandan; Tian, Baocheng; Ma, Shilin; Song, Shilong; Pan, Weisan*
来源:International Journal of Pharmaceutics, 2013, 458(1): 181-187.
DOI:10.1016/j.ijpharm.2013.09.031

摘要

This study was aimed to develop an ascending release push-pull osmotic pump (APOP) system with a novel mechanism and an easy manufacture process. Theoretical analysis showed that the key to obtain the non-zero order drug release was to break the balance between the drug suspension release rate in the drug layer and the swelling rate of the core, and an ascending drug release rate was achieved when the former was slower than the latter. A polymer (Polyox WSR N-12K) was introduced as a suspension agent in drug layer to slow down the hydration rate of drug layer. Influence of the composition of drug layer (PEO category, total amount, drug loading and fraction of NaCl), push layer (NaCl amount), and also the level of coating weight gain on the drug release profiles was investigated. Observation of hydration state was estimated by taking photos, and also was confirmed by the theories. Paliperidone was delivered successfully by APOP at an ascending release rate up to 20 h in vitro. The in vivo plasma concentration of paliperidone in beagle dogs increased gradually up to 19h. The APOP with an easy manufacture process was a promising strategy to deliver drug at an ascending rate.