Mitochondrial free [Ca2+] dynamics measured with a novel low-Ca2+-affinity aequorin probe

作者:de la Fuente Sergio; Fonteriz Rosalba I; de la Cruz Pedro J; Montero Mayte; Alvarez Javier*
来源:Biochemical Journal, 2012, 445: 371-376.
DOI:10.1042/BJ20120423

摘要

Mitochondria have a very large capacity to accumulate Ca2+ during cell stimulation driven by the mitochondrial membrane potential. Under these conditions, [Ca2+](M) (mitochondrial [Ca2+]) may well reach millimolar levels in a few seconds. Measuring the dynamics of [Ca2+](M) during prolonged stimulation has been previously precluded by the high Ca2+ affinity of the probes available. We have now developed a mitochondrially targeted double-mutated form of the photoprotein aequorin which is able to measure [Ca2+] in the millimolar range for long periods of time without problems derived from aequorin consumption. We show in the present study that addition of Ca2+ to permeabilized HeLa cells triggers an increase in [Ca2+](M) up to an steady state of approximately 2-3 mM in the absence of phosphate and 0.5-1 mM in the presence of phosphate, suggesting buffering or precipitation of calcium phosphate when the free [Ca2+] reaches 0.5-1 mM. Mitochondrial pH acidification partially re-dissolved these complexes. These millimolar [Ca2+](M) levels were stable for long periods of time provided the mitochondria, membrane potential was not collapsed. Silencing of the mitochondrial Ca2+ uniporter largely reduced the rate of [Ca2+](M) increase, but the final steady-state [Ca2+](M) reached was similar. In intact cells, the new probe allows monitoring of agonist-induced increases of [Ca2+](M) without problems derived from aequorin consumption.

  • 出版日期2012-8-1