Mechanical Performance of Polyiosoprene Copolymer Anion Exchange Membranes by Varying Crosslinking Methods

作者:Vandiver Melissa A*; Caire Benjamin R; Ertem S Piril; Tsai Tsung Han; Coughlin E Bryan; Herring Andrew M; Liberatore Matthew W
来源:Journal of the Electrochemical Society, 2015, 162(4): H206-H212.
DOI:10.1149/2.0471504jes

摘要

Anion exchange membranes (AEM) are polymer electrolytes that facilitate ion transport in alkaline fuel cells and electrochemical devices. Fabrication of mechanically durable AEMs with high ionic conductivity is a challenge. Here, a copolymer of isoprene and vinylbenzyl trimethylammonium and a terpolymer of isoprene, vinylbenzyl trimethylammonium and styrene were crosslinked by various methods, and properties, including conductivity and mechanical strength, were investigated at dry and saturated conditions. Polymer chemistry and degree of crosslinking significantly influenced conductivity, swelling, and mechanical properties. The terpolymer had a higher proportion of vinylbenzyl trimethylammonium units increasing the ion exchange capacity (IEC), but membranes could still be rendered insoluble by crosslinking. The higher IEC of the terpolymer resulted in higher chloride conductivity, 20-75 mS/cm at 50 degrees C and 95% RH, compared to 4-17 mS/cm for the copolymer at the same conditions. At dry conditions films were stiff, having Young's moduli between 100-740 MPa, but hydration caused severe softening, reducing moduli by 1-2 orders of magnitude. The severe softening effect of hydration was confirmed by dynamic mechanical analysis. The AEMs studied did not have adequate mechanical durability at hydrated conditions, additional work is needed to determine polymer chemistries and crosslinking methods that will produce robust AEMs for long-term use in fuel cells and electrochemical devices.

  • 出版日期2015