摘要

Species level identifications of morphologically simple marine algae have undoubtedly caused biodiversity assessments to be an arduous task. The green algal genus Ulva L., 1753, is notorious for morphological plasticity and cryptic speciation. We used two chloroplast-encoded (rbcL and tufA) molecular markers and the nuclear internal transcribed spacer 1 (ITS1) of the ribosomal cistron to detect Ulva ohnoi M. Hiraoka and S. Shimada, 2004, a species known for forming green tides in Japan, as a new record for the Western Atlantic, including the Gulf of Mexico (GoMX) and Atlantic coast of Florida. All rbcL sequences from this investigation were identical to reports for U. ohnoi. The Western Atlantic isolates showed relatively low genetic diversity in tufA and ITS1 sequences, which suggests that this species is not native to the GoMX and Atlantic Florida. Furthermore, we have identified U. ohnoi as the species that formed an ephemeral, localized overgrowth during July of 2013 in Biscayne Bay, Florida, an area with a persistent bloom of two other green algal species, Anadyomene stellata J. V. Lamouroux, 1812, and Anadyomene sp., due to eutrophication from anthropogenic nutrient loading near canals. A tissue nutrient analysis of samples from this overgrowth of Ulva showed that this species has a high affinity for nitrogen, especially partial derivative 15N, which suggests anthropogenic sources of N. Further investigations are needed to assess the geographical ranges of this species in this region as well as the potential invasiveness of this alga in the Western Atlantic. It is highly recommended to monitor the abundance of this species in response to nutrient discharges in Biscayne Bay.

  • 出版日期2016-7