Analysis of vorticity dynamics for hump characteristics of a pump turbine model

作者:Li, Deyou; Gong, Ruzhi; Wang, Hongjie*; Han, Lei; Wei, Xianzhu; Qin, Daqing
来源:Journal of Mechanical Science and Technology, 2016, 30(8): 3641-3650.
DOI:10.1007/s12206-016-0725-1

摘要

Conventional parameters based on CFD methodology for the investigation on hump characteristics of a pump turbine cannot reflect the dynamic interaction mechanism between the runner and the fluid. This research presents a dynamic interaction mechanism of a pump turbine operating in the hump region. First, vorticity dynamic parameters were obtained based on the theory of vorticity dynamics. Second, 3-D unsteady flow simulations were performed in a full pump turbine model using the SST k-omega turbulence model, and numerical results have a good agreement with the experiments. Then, analysis was carried out to determine the relation between the vorticity dynamic parameters and hump characteristics. The results indicate that the theory of vorticity dynamics has an advantage in evaluating the dynamic performance of a pump turbine. The energy transfer between the runner and the fluid is through vorticity dynamic parameters-pressure and friction terms, in which the pressure term accounts for the most. Furthermore, vortex generation mainly results from the skin friction. Combining vorticity dynamic analysis with the method of Q-criterion indicates that hump characteristics are related to the reduction of the surface normal pressure work and vortex motion on the suction surfaces close to the leading edges in the runner, and the increase of skin friction work in the stay-guide vanes.