摘要

CNC-based hybrid manufacturing systems capable of additive manufacturing (AM) and machining have been developed for metal and large thermoplastic components. Currently, there are no CAD/CAM systems that seamlessly integrate additive and machining tool paths and simulation, as required for a complete hybrid manufacturing solution. Tool paths for bead-based AM cannot be generated by simply reversing the Z processing order of waterline machining tool paths. AM process planning modules are significantly different than those for machining. Unique AM process planning challenges related to geometry, establishing relevant process-specific settings, thermodynamics, tool path planning and realistic virtual process simulation are discussed. To support hybrid manufacturing, the output from the additive manufacturing simulation must be employed as a stock model for subsequent machining. This paper discusses the architecture, process and data flows for a bead-based AM processes, with results being presented primarily for laser cladding.

  • 出版日期2017-4