摘要

When a spiral groove is formed using superplastic molding, precision casting, additive manufacturing, or other non-mechanical processing technology, it is difficult to meet the molding precision required for direct use, and the surface quality and accuracy of the shape need to be improved through a finishing process. In view of the poor reachability of the current tool-based polishing process, a tool-less polishing method using free-abrasive grains for complex spiral grooves is proposed. With this method, by controlling the movement of the workpiece, the design basis and relative motion of the abrasive particles along a helical path remain consistent, resulting in a better polishing profile. A spiral groove of a revolving body is taken as the research object; the influence of the installation method and the position of the parts, as well as the effect of the rotational speed of the abrasive ball on its relative motion along a helical trajectory, are studied, and the polishing cutting process of an abrasive ball is reasonably simplified. A consistent mathematical model of the trajectory of an abrasive ball relative to the design helix is constructed. The grooved drum parts are verified through a polishing experiment. The spiral groove of the revolving body is modified and polished. Experiments show that the process not only corrects the shape a spiral groove error, but also reduces the surface roughness of a spiral groove. This study provides a theoretical basis for achieving free-abrasive, tool-free polishing.

全文