Assembly and structure of alpha-helical peptide films on hydrophobic fluorocarbon surfaces

作者:Weidner Tobias; Samuel Newton T; McCrea Keith; Gamble Lara J; Ward Robert S; Castner David G*
来源:Biointerphases, 2010, 5(1): 9-16.
DOI:10.1116/1.3317116

摘要

The structure, orientation, and formation of amphiphilic alpha-helix model peptide films on fluorocarbon surfaces has been monitored with sum frequency generation (SFG) vibrational spectroscopy, near-edge x-ray absorption fine structure (NEXAFS) spectroscopy, and x-ray photoelectron spectroscopy (XPS). The alpha-helix peptide is a 14-mer of hydrophilic lysine and hydrophobic leucine residues with a hydrophobic periodicity of 3.5. This periodicity yields a rigid amphiphilic peptide with leucine and lysine side chains located on opposite sides. XPS composition analysis confirms the formation of a peptide film that covers about 75% of the surface. NEXAFS data are consistent with chemically intact adsorption of the peptides. A weak linear dichroism of the amide pi* is likely due to the broad distribution of amide bond orientations inherent to the alpha-helical secondary structure. SFG spectra exhibit strong peaks near 2865 and 2935 cm(-1) related to aligned leucine side chains interacting with the hydrophobic surface. Water modes near 3200 and 3400 cm-1 indicate ordering of water molecules in the adsorbed-peptide fluorocarbon surface interfacial region. Amide I peaks observed near 1655 cm-1 confirm that the secondary structure is preserved in the adsorbed peptide. A kinetic study of the film formation process using XPS and SFG showed rapid adsorption of the peptides followed by a longer assembly process. Peptide SFG spectra taken at the air-buffer interface showed features related to well-ordered peptide films. Moving samples through the buffer surface led to the transfer of ordered peptide films onto the substrates.

  • 出版日期2010-3