摘要

Elapsed time is always one of the most important performance measures for polymer injection moulding simulation. Solving pressure correction equations is the most time-consuming part in the mould filling simulation using finite volume method with SIMPLE-like algorithms. Algebraic multigrid (AMG) is one of the most promising methods for this type of elliptic equations. It, thus, has better performance by contrast with some common one-level iterative methods, especially for large problems. And it is also suitable for parallel computing. However, AMG is not easy to be applied due to its complex theory and poor generality for the large range of computational fluid dynamics applications. This paper gives a robust and efficient parallel AMG solver, A1-pAMG, for 3D mould filling simulation of injection moulding. Numerical experiments demonstrate that, A1-pAMG has better parallel performance than the classical AMG, and also has algorithmic scalability in the context of 3D unstructured problems.