摘要

Hypothesis: Although the interaction of DNA with various types of intercalating chemicals, such as planar polycyclic aromatic compounds, has been extensively investigated over the past several decades, little is known about the relationship between the structure of a DNA binder and its affinity for DNA. The use of DNA as an adsorbent for environmental cleaning purposes requires information on its affinity for organic chemicals with different structures. Experiment: In the present study we investigated the binding of DNA to aromatic chemicals with various structures and charges by three methods: binding of organic chemicals to DNA followed by removal by precipitation with cationic nanoparticles (1) or a cationic surfactant (2), and absorption of organic chemicals by a DNA hydrogel (3). Findings: The results showed that, for most neutral organic chemicals, the hydrophobicity of the organic molecule is the main driving force for efficient binding to DNA. The double-helicity of DNA contributed to stronger binding to most of the compounds. The efficiency of the uptake of organic chemicals increased substantially when a hydrophobic cationic surfactant was used for DNA-complex condensation and removal. The potential environmental application of DNA as an adsorbent for the removal of aromatic organic pollutants from water is discussed.

  • 出版日期2015-5-1