摘要

Methamphetamine contamination from illegal production operations poses a potential health concern for emergency responders, child protective services, law enforcement, and children living in contaminated structures. The objective of this study was to evaluate dermal transfer efficiencies of methamphetamine from contaminated household surfaces. These transfer efficiencies are lacking for methamphetamine, and would be beneficial for use in exposure models. Surfaces were contaminated using a simulated smoking method in a stainless steel chamber. Household surfaces were carpet, painted drywall, and linoleum. Dermal transfer efficiencies were obtained using cotton gloves for two hand conditions, dry or saliva moistened (wet). In addition, three contact scenarios were evaluated for both hand conditions: one, two, or three contacts with contaminated surfaces. Dermal transfer efficiencies were calculated for both hand conditions and used as inputs in a Stochastic Human Exposure and Dose Simulation model (SHEDS-Multimedia, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, N.C.). Results of this study showed that average dermal transfer efficiencies of methamphetamine ranged from 11% for dry hands to 26% for wet hands. There was a significantly higher wet transfer as compared to dry transfer for all surfaces. For wet hands, dermal transfer depended on surface type with higher transfer from carpet and linoleum as compared to drywall. Based on our estimates of dermal transfer efficiency, a surface contamination clearance level of 1.5g/100cm(2) may not ensure absorbed doses remain below the level associated with adverse health effects in all cases. Additional dermal transfer studies should be performed using skin surrogates that may better predict actual skin transfer.

  • 出版日期2014-4-1