摘要

In this paper, an enhanced numerical method for forming tool design optimisation in three-dimensional (3D) sheet metal forming applications is presented. The applied procedure enables a determination of appropriate forming tool geometry so that the manufacture of a sheet metal product inside specified tolerances would be ensured. In addition to the springback that occurs in the formed part after removal of the forming tools, the impact of the thinning of the sheet metal during the forming process is considered in the method, and both effects are correspondingly compensated for an iterative procedure. Computational efficiency in the E-DA-3D method is achieved mainly because the improved accuracy of the communicated data established corresponding interrelations between the discretised topologies used in the definition of the prescribed product geometry, the current tool geometry, and on this basis actually computed product geometry which is achieved by means of additional point topology mappings. The potential and effectiveness of the method is demonstrated by considering two cases of the forming tool design optimisation that are also experimentally validated.

  • 出版日期2014-8

全文