摘要

Viper envenomations are characterized by prominent local and systemic manifestations including hematological alterations. Snake venom metalloproteinases (SVMPs) and phospholipase A(2) (PLA(2)) plays crucial role in the pathophysiology of hemorrhage by targeting/altering the platelets function which may result in thrombocytopenia. Platelets undergo the classic events of mitochondria-mediated apoptotic pathway due to augmented endogenous reactive oxygen species (ROS) levels. The observed anticoagulant effects during viper envenomations could be due to exacerbated platelet apoptosis and thrombocytopenia. Moreover, antivenin treatments are ineffective against the venom-induced oxidative stress; therefore, it necessitates an auxiliary therapy involving antioxidants which can effectively scavenge the endothelium-generated/endogenous ROS and protect the platelets. The present study explored the effects of viper venom on platelet apoptosis and its amelioration by a phytochemical crocin. The study evaluated the Vipera russelli venom-induced apoptotic events including endogenous ROS generation, intracellular Ca2+ mobilization, mitochondrial membrane depolarization, cyt-c translocation, caspase activation and phosphatidylserine externalization which were effectively mitigated when the venom was pre-treated with crocin. The study highlights one of the less studied features of venom-induced secondary complications i.e. platelet apoptosis and sheds light on the underlying basis for venom-induced thrombocytopenia, systemic hemorrhage and in vivo anticoagulant effect.

  • 出版日期2013-11

全文