摘要

Proper matching of forestry machinery is important when raising mechanization levels for forestry production. In the matching process, forestry machinery needs not only expertise, but also improved methods for solving problems. I propose combination of case-based reasoning (CBR) and rule-based reasoning (RBR) by calculating the similarity of quantitative parameters of various forestry machines in an analytical and hierarchical process. I calculated the similarity of machinery used in forest industries to enable better selection and matching of equipment. I propose a weight-value adjusting method based on sums of squares of deviations in which the individual parameter weights were modified in the process of application. During the process of system design, I put forward a design method knowledge base and generated a dynamic web reasoning framework to integrate the processes of forest industry machinery selection and weight-value adjustment. This enables expansion of the scope of the complete system and enhancement of the reasoning efficiency. I demonstrate the validity and practicability of this method using a practical example.