摘要

Firstly, taking rigidity excitation, error excitation, meshing impact, clearance variety and other non-linear factors into account, the bend-twist-shaft-swing non-linear coupled vibration model and differential equations for the multi degree of freedom helical gear driven system are built based on the lumped mass method. Secondly, the model is solved by the fifth order variable step size and self-adapted method (Runge-Kutta method), and then the system vibration time-domains and frequency-domains are obtained. On the above basis, we fitted the system different random error's probability distributions and carried out sampling calculation by Monte Carlo method for the system, and then got the non-linear random structure system's vibration reliability at different time. This method is easy to program, and provides a theory basis for helical gear driven system's quantification design of controllable structure and performance.