摘要

Choosing a distributed energy system (DES) is a multi-criteria decision-making problem. Decision-makers should not only consider the cost of the system, but also consider the energy efficiency and environmental protection of the system. In order to help decision-makers choose the best DES, this paper designs seven different DESs based on specific examples, using five criteria: investment cost, operation cost, primary energy consumption, primary energy utilization, and yearly CO2 emission. Additionally, three methods of super-efficiency Data Envelopment Analysis (DEA), Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS), and Complex Proportional Assessment (COPRAS) are used to evaluate the system priority and analyze the sensitivity under different decision-making scenarios. The results show that when decision-makers only consider cost factors, traditional systems are the best choice. However, renewable energy systems are the best choice when decision-makers consider energy efficiency and environmental protection rather than cost. Among them, the photovoltaic storage system is the best system in many decision-making scenarios, because of its comprehensive advantages in cost, energy efficiency, and environmental benefit. Simultaneously, the system's prioritization of different decision-making methods is different. In this paper, according to the Spearman correlation index test, the results achieved from TOPSIS and COPRAS are relevant and feasible.