摘要

Arsenic is an environmental pollutant, and its liver toxicity has long been recognized. The effect of arsenic on liver protein expression was analyzed using a proteomic approach in monkeys. Monkeys were orally administered sodium arsenite (SA) for 28 days. As shown by 2D-PAGE in combination with MS, the expression levels of 16 proteins were quantitatively changed in SA-treated monkey livers compared to control-treated monkey livers. Specifically, the levels of two proteins, mortalin and tubulin beta chain, were increased, and 14 were decreased, including plastin-3, cystathionine-beta-synthase, selenium-binding protein 1, annexin A6, alpha-enolase, phosphoenolpyruvate carboxykinase-M, erlin-2, and arginase-1. In view of their functional roles, differential expression of these proteins may contribute to arsenic-induced liver toxicity, including cell death and carcinogenesis. Among the 16 identified proteins, four were selected for validation by Western blot and immunohistochemistry. Additional Western blot analyses indicated arsenic-induced dysregulation of oxidative stress related, genotoxicity-related, and glucose metabolism related proteins in livers from SA-treated animals. Many changes in the abundance of toxicity-related proteins were also demonstrated in SA-treated human hepatoma cells. These data on the arsenic-induced regulation of proteins with critical roles may help elucidate the specific mechanisms underlying arsenic-induced liver toxicity.

  • 出版日期2014-8