摘要

Crown ethers have been widely used for lithium separation in practical applications due to their selectivity. In this study, model crown ethers having different cavity sizes, donor atoms and electron donating/withdrawing substituent groups were systematically designed. These ethers were subsequently used to study the chemical structures and thermodynamic parameters of Li+-crown ether complexes, employing density functional theory at the B3LYP/6-311+G(d, p) level. Benzo-15-crown-5 was found to have the ability to strongly coordinate lithium ions. It was determined that the coordination ability of crown ethers for lithium ions can be tuned by varying both the substituent groups and the type and amount of donor atoms. These results should be of significant benefit in developing the practical applications of crown ethers for lithium separation.