摘要

Precisely monitoring land cover/use is crucial for urban environmental assessment and management. Various classification techniques such as pixel-based and object-based approaches have advantages and disadvantages. In this article, based on our experiment data from an unmanned platform carried lidar scanner system and camera, we explored and compared classification accuracies of pixel-based decision tree (DT) and object-based Support Vector Machine (SVM) approaches. Lidar height information can improve classification accuracy based on either object-based SVM or pixel-based DT. From total classification accuracy, object-based SVM was higher than that of pixel-based DT classification, and total accuracy and kappa coefficient of the former were 92.71% and 0.899, respectively. However, pixel-based DT outperformed object-based SVM when classifying small 'scatter' tree along roads. Additionally, in order to evaluate the accuracy of pixel-based DT and object-based SVM, we added benchmark data of ISPRS to compare the classification results of two methods. Object-based SVM classification methods by combining aerial imagery with lidar height information can achieve higher classification accuracy. And, accurately extracting tree class of different landscape pattern should select appropriate machine-learning algorithms. Comparison of the results on two methods will provide a reference for selecting a particular classification approaches according to local conditions.