摘要

Rolled sheet metal alloys exhibit plastic anisotropy, which leads to the formation of ears during the deep drawing process. An analytical function proposed by Yoon et al. (hit J Plast 27(8):1165-1184, 2011) predicts earing profile based on yield stress and r value directionalities for circular cup drawing. In this study, this analytical approach is applied for a deep drawing of Ti-6Al-4V at elevated temperatures up to 400 degrees C. Three yield criteria namely, Hill 1948, Barlat 1989 and Barlat Yld2000-2d are used to obtain the directionality inputs for the analytical formula. The analytical model is validated using experimental results and FE simulations and is found to be closely matched while requiring very less CPU time. FE simulation has been also conducted with various yield functions. Barlat Yld2000-2d is considered to be the most suitable yield criterion for very accurate earing prediction in deep drawing of Ti-6Al-4V as the inputs for both the analytical and FEM models.

  • 出版日期2018-7

全文