Arachidonic acid induces both Na+ and Ca2+ entry resulting in apoptosis

作者:Fang Kwang Ming; Chang Wei Luen; Wang Su Mei; Su Ming Jai; Wu Mei Lin*
来源:Journal of Neurochemistry, 2008, 104(5): 1177-1189.
DOI:10.1111/j.1471-4159.2007.05022.x

摘要

Marked accumulation of arachidonic acid ( AA) and intracellular Ca2+ and Na+ overloads are seen during brain ischemia. In this study, we show that, in neurons, AA induces cytosolic Na+ ([Na+](cyt)) and Ca2+ ([Ca2+](cyt)) overload via a non-selective cation conductance ( NSCC), resulting in mitochondrial [Na+](m) and [Ca2+](m) overload. Another two types of free fatty acids, including oleic acid and eicosapentaenoic acid, induced a smaller increase in the [Ca2+](i) and [Na+](i). RU360, a selective inhibitor of the mitochondrial Ca2+ uniporter, inhibited the AA-induced [Ca2+](m) and [Na+](m) overload, but not the [Ca2+](cyt) and [Na+](cyt) overload. The [ Na+] m overload was also markedly inhibited by either Ca2+-free medium or CGP3715, a selective inhibitor of the mitochondrial Na-cyt(+)-Ca-m(2+) exchanger. Moreover, RU360, Ca2+-free medium, Na+-free medium, or cyclosporin A (CsA) largely prevented AA-induced opening of the mitochondrial permeability transition pore, cytochrome c release, and caspase 3-dependent neuronal apoptosis. Importantly, Na+-ionophore/Ca2+-free medium, which induced [Na+](m) overload, but not [Ca2+](m) overload, also caused cyclosporin A-sensitive mitochondrial permeability transition pore opening, resulting in caspase 3-dependent apoptosis, indicating that [Na+](m) overload per se induced apoptosis. Our results therefore suggest that AA-induced [Na+](m) overload, acting via activation of the NSCC, is an important upstream signal in the mitochondrial-mediated apoptotic pathway. The NSCC may therefore act as a potential neuronal death pore which is activated by AA accumulation under pathological conditions.

  • 出版日期2008-3