ACOUSTIC RADIATION FORCE FOR VASCULAR CELL THERAPY: IN VITRO VALIDATION

作者:Kaya Mehmet; Toma Catalin; Wang Jianjun; Grata Michelle; Fu Huili; Villanueva Flordeliza S*; Chen Xucai
来源:Ultrasound in Medicine and Biology, 2012, 38(11): 1989-1997.
DOI:10.1016/j.ultrasmedbio.2012.07.019

摘要

Cell-based therapeutic approaches are attractive for the restoration of the protective endothelial layer in arteries affected by atherosclerosis or following angioplasty and stenting. We have recently demonstrated a novel technique for the delivery of mesenchymal stem cells (MSCs) that are surface-coated with cationic lipid microbubbles (MBs) and displaced by acoustic radiation force (ARF) to a site of arterial injury. The objective of this study was to characterize ultrasound parameters for effective acoustic-based delivery of cell therapy. In vitro experiments were performed in a vascular flow phantom where MB-tagged MSCs were delivered toward the phantom wall using ARF generated with an intravascular ultrasound catheter. The translation motion velocity and adhesion of the MB-cell complexes were analyzed. Experimental data indicated that MSC radial velocity and adhesion to the vessel phantom increased with the time-averaged ultrasound intensity up to 1.65 W/cm(2), after which no further significant adhesion was observed. Temperature increase from baseline near the catheter was 5.5 +/- 0.8 degrees C with this setting. Using higher time-averaged ultrasound intensities may not significantly benefit the adhesion of MB-cell complexes to the target vessel wall (p = NS), but could cause undesirable biologic effects such as heating to the MB-cell complexes and surrounding tissue. For the highest time-averaged ultrasound intensity of 6.60 W/cm(2), the temperature increase was 11.6 +/- 1.3 degrees C. (E-mail: villanuevafs@upmc.

  • 出版日期2012-11