摘要

This paper presents a new stochastic framework for clearing of day-ahead reactive power market. The uncertainty of generating units in the form of system contingencies are considered in the reactive power market-clearing procedure by the stochastic model in two steps. The Monte-Carlo Simulation (MCS) is first used to generate random scenarios. Then, in the second step, the stochastic market-clearing procedure is implemented as a series of deterministic optimization problems (scenarios) including non-contingent scenario and different post-contingency states. In each of these deterministic optimization problems, the objective function is total payment TPF) of generators which refers to the payment paid to the generators for their reactive power compensation. The effectiveness of the proposed model is examined based on the IEEE 24-bus Reliability Test System (IEEE 24-bus RTS).

  • 出版日期2010-1