摘要

The working resistance of soil cultivating component can be reduced efficiently by way of optimizing its macroscopic soil-engaging surface. The cultivating component designed by this method possesses the features of simple structure, low cost and energy-saving. The forms of generatrix and directrix, and the way of generatrix slides along the directrix would seriously affect the working resistance of soil cultivating component. The macroscopic soil-engaging surfaces of soil cultivating components were classified mainly by viewpoint of the curvature profile of the directrix. How the geometric parameters of the macroscopic soil-engaging surface of soil cultivating component affect the working resistance was introduced, including the width, cutting angle, cultivating depth, ratio of width and depth, ratio of length and depth, etc. The soil-engaging surfaces with different kinds of directrixes, including straight line, normal circular curve, simple curve and complex curvature-changing curve, were especially analyzed to uncover their affection to working resistance and soil disturbance.

全文