摘要

Performing search and rescue tasks in the ruins after disasters demand rescue robots with slender and compliant structure to accommodate the complicated configurations under debris. This paper presents the structural design and system composition of a novel tendon-sheath actuated compliant rescue manipulator with slender and flexible body. The proposed robot can drill into the narrow space where rescuers and traditional rigid robots cannot get in because of size limitation or toxic environment. The self-sensing calibration, dynamic modeling, and hybrid force/position control trajectory of the compliant gripper with integrated position and force monitoring capabilities are analyzed and discussed. With the aim of regulating the gripper displacement and clamping force during operation, a hybrid force/position control strategy is proposed based on a cascaded proportional-integral-derivative (PID) controller and a fuzzy sliding mode controller (FSMC). Experimental setups mainly consisting of servo motor, tendon sheath transmission components, compliant gripper, and real-time control system are established to calibrate the strain gauge sensors and identify the dynamic model parameters. Further experimental investigations involving force tracking experiments, position tracking experiments, and object grasping experiments are carried out. The experimental results demonstrate the effectiveness of the developed self-sensing approach and control strategies during rescue operation.