摘要

SiC-supported Pt nanocatalyst was prepared by electrodeposition of Pt nanoparticles on the surface of high-surface-area SiC, which was fabricated by a versatile carbothermal reduction method. Characterization studies show that such synthesis protocol leads to well distribution of Pt nanoparticles, with a mean particle size of 2.9 nm on the support. This catalyst has been electrochemically characterized toward methanol oxidation, which exhibits higher catalytic activity, durability, and electrochemical active surface area than the electrodeposited Pt on multiwalled carbon nanotubes (MWCNTs). Further investigation reveals that the SiC-supported Pt also shows superior CO tolerance to Pt/MWCNTs. These results suggest that high-surface-area SiC could be a promising supporting material for constructing high-performance methanol oxidation electrocatalysts.