摘要

The WorldView-3 (WV-3) satellite is a new sensor with high spectral resolution, which equips eight multispectral bands in the visible and near-infrared (VNIR) and additional eight bands in the shortwave infrared (SWIR). In order to meet the requirements of large-scale geological mapping, this paper assessed WV-3 data for lithological mapping in comparison with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Operational Land Imager (OLI/Landsat-8) data. The study area is located in the Pobei area of the Xinjiang Uygur Autonomous Region, where bedrock outcrops are widely distributed. The whole experiment was divided into six steps: data pre-processing, visual interpretation of various lithological units, samples procedure, lithological mapping by a support vector machine algorithm (SVM), accuracy evaluation, and assessment. The results showed that the classification accuracy of WV-3 data was 87%, which kept 17% higher than that of ASTER data, 14% higher than that of OLI/Landsat-8 data, indicated that WV-3 data contained more diagnostic absorption features mainly thanks to its SWIR bands, and benefited by its high spatial resolution, as well. However, it also confirmed that there were some considerable flaws, such as the confusing identification of biotite-quartz schist. Overall, the WV-3 data is still the most promising data for geological applications currently.