摘要

Plate shaped bentonite particles of size similar to 600 nm and thickness similar to 2 nm are dispersed in a magnetic nanofluid. Magnetic field dependent flow behavior of this composite suspension is studied using a horizontal microcapillary placed between the poles of an electromagnet. The plate shaped bentonite particle produces extra hindrance to the flow under the application of moderate magnetic field and produces an enhanced magnetoviscous effect. 75% volume concentration of bentonite produces eight times larger change in magnetic field dependent viscosity than does the pure magnetic nanofluid. Hindrance to the flow is due to the chain like structure of magnetic nanoparticles, tumbling and rotational motion of bentonite particles and interaction between magnetic and bentonite particles. The field-induced structures are also observed using an optical microscope. Results offer several advantages over the inverse MR effect as well as to study the motion of biological cells and tissues under the effect of magnetic field.

  • 出版日期2013-4