摘要

A novel 4-amino-1,8-naphthalimide (NDI) with two different metal cation receptors connected at 4-amino or imide nitrogen positions respectively was designed and prepared. Significant internal charge transfer (ICT) as well as photoinduced electron transfer (PET) from the receptors to NDI is revealed by the shifted UV-vis absorption spectra and significant fluorescence quenching. Both Zn2+ and Cu2+ can coordinate selectively with the two cation receptors in this molecule with different affinities. The coordination of Zn2+ with the receptor at imide nitrogen hindered the PET process and accordingly restored the quenched fluorescence of NDI. But the coordination of Zn2+ at 4-amino position blocked the ICT process and caused significant blue-shift on the absorption peak with the fluorescence intensity unaffected. Similarly, coordination of Cu2+ with the receptor at imide nitrogen can block the PET process, but can not restore the quenched fluorescence of compound 3 due to the paramagnetic properties of Cu2+, which quench the fluorescence significantly instead. With Cu2+ and Zn2+ as two chemical inputs and absorption or fluorescence as output, several logic gate operations, such as OR, NOR and INHIBIT, can be achieved.