摘要

Multidrug resistance (MDR) limits the application of a large number of cancer-fighting agents in clinical therapy. One reason is that P-glycoprotein (Pgp) efflux pumps are usually overexpressed and lead to drug efflux in the cancer cells, which limits the viability of many chemotherapeutics. Current available inhibitors which block the Pgp pump efflux are usually not widely used in clinical practice, because they change other drug pharmacokinetic profiles or increase side effects. Here, through covalent linkage of cancer-targeting delocalized lipophilic cation FF and DNA-damaging drug nitrogen mustard chlorambucil (CLB), we rationally designed and synthesized a tumor-targeting anticancer agent FFCLB. And we found and proved that the FFCLB was capable of reducing the outflow of Pgp substrates efficiently. This conjugate selectively improves adriamycin uptake and toxicity through reducing MDR1 mRNA and Pgp protein expression. Based on molecular targeted strategy, this study can facilitate the discovery of superior MDR reducing agents to provide a more effective and safer way of resensitizing MDR.