摘要

We studied the optical scattering noise, measurement artifacts, and their suppression in single-shot measurements of prepulse contrast. The measurement noise due to air scattering and the two kinds of measurement artifacts resulting from multiple reflections of the generated correlation signal and correlation between the pulse under test and the internally reflected sampling pulse were experimentally explored. The scattering noise and measurement artifacts significantly degrade the measurement fidelity. We demonstrate the clean measurement of prepulse contrast in a single-shot cross-correlator by attenuating the main peak of the correlation beam with a dot mirror and designing the correlating process based on a periodically-poled lithium niobate crystal embedded in an unpoled wafer. The standard time-scanning measurements of pulse contrast are also performed to confirm the experimental results of our single-shot measurement.