摘要

Fluctuation-dissipation relations, i.e., the relation between two-time correlation and linear response functions, were successfully used to search for signs of equilibration and to identify effective temperatures in the non-equilibrium behavior of a number of macroscopic classical and quantum systems in contact with thermal baths. Among the most relevant cases in which the effective temperatures thus defined were shown to have a thermodynamic meaning one finds the stationary dynamics of driven super-cooled liquids and vortex glasses, and the relaxation of glasses. Whether and under which conditions an effective thermal behavior can be found in quantum isolated many-body systems after a global quench is a question of current interest. We propose to study the possible emergence of thermal behavior long after the quench by studying fluctuation-dissipation relations in which (possibly time- or frequency-dependent) parameters replace the equilibrium temperature. If thermalization within the Gibbs ensemble eventually occurs these parameters should be constant and equal for all pairs of observables in %26apos;partial%26apos; or %26apos;mutual%26apos; equilibrium. We analyze these relations in the paradigmatic quantum system, i.e., the quantum Ising chain, in the stationary regime after a quench of the transverse field. The lack of thermalization to a Gibbs ensemble becomes apparent within this approach.

  • 出版日期2012-9