摘要

Vertical component of seismic excitations tremendously affects the performance of bridges during the earthquakes. Several conducted studies identified the lack of engineering attention to the vertical seismic excitation as the main reason of various considerable bridge damages during the past earthquakes. Thus, in this article, an innovative system with superelastic properties is proposed for retrofitting and also new design of the bridges which can simultaneously mitigate the effects of vertical and horizontal seismic excitations. In order to investigate the efficiency of the new system, an evaluation is performed through many nonlinear time history analyses on a three-dimensional model of a detailed multi-span simply supported bridge using a suite of representative ground motions of the bridge region. The analyses are conducted separately on the pertinent issues that affect the performance of the new proposed system. As a part of the study, to identify the sensitivity of the new system and evaluate the overall seismic performance, several assessment parameters are utilized. The results show that the proposed system is efficient for reducing bridge responses as well as improving nonlinear performance of the columns during vertical and horizontal seismic excitations.

  • 出版日期2017-7