摘要

Background: G protein-coupled receptors (GPCRs) are ubiquitous surface proteins mediating various biological responses and thus, important targets for therapeutic drugs. GPCRs individually produce their own signaling as well as modulate the signaling of other GPCRs. Real-time observation of GPCR signaling and modulation in living cells is key to molecular study of biological responses and pharmaceutical development. However, fluorescence imaging, the technique widely used for this purpose, requires a fluorescent dye which may inhibit biological responses or a fluorescent-tagged target protein created through time-consuming genetic manipulation. In this study, we applied two-dimensional surface plasmon resonance (SPR) imaging to monitoring the translocation of protein kinase C (PKC), a major GPCR-coupled signaling molecule in the widely used HEK293 cell lines and examined whether the signaling of, and, modulation between heterologously expressed GPCRs can be measured without fluorescent labeling. Results: We cultured HEK293 cells on the gold-plated slide glass and evoked SPR at the interface between the cell's plasma membrane and the gold surface with incident light. The translocation of activated native PKC to the plasma membrane is expected to alter the incident angle-SPR extent relation, and this could be detected as a change in the intensity of light reflection from the specimen illuminated at a fixed incident angle. Direct activation of PKC with 12-O-tetradecanoylphorbol-13-acetate increased the reflection intensity. This increase indeed reported PKC translocation because it was reduced by a pre-treatment with bisindolylmaleimide-1, a PKC inhibitor. We further applied this technique to a stable HEK293 cell line heterologously expressing the GPCRs type-1 metabotropic glutamate receptor (mGluR1) and adenosine A1 receptor (A1R). (RS)-3,5-dihydroxyphenylglycine, a mGluR1 agonist, increased the reflection intensity, and the PKC inhibitor reduced this increase. A pre-treatment with (R)-N-6-phenylisopropyladenosine, an A1R-selective agonist suppressed mGluR1-mediated reflection increase. These results suggest that our technique can detect PKC translocation initiated by ligand binding to mGluR1 and its modulation by A1R. Conclusions: SPR imaging turned out to be utilizable for monitoring GPCR-mediated PKC translocation and its modulation by a different GPCR in a heterologous expression system. This technique provides a powerful yet easy-to-use tool for molecular study of biological responses and pharmaceutical development.

  • 出版日期2016-4-12