摘要

We present a critical review of methods for defining the chemical environment during liquid cell electron microscopy investigation of electron beam induced nanomaterial growth and degradation. We draw from the radiation chemistry and liquid cell electron microscopy literature to present solution chemistry and electron beam-based methods for selecting the radiolysis products formed and their relative amount during electron irradiation of liquid media in a transmission electron microscope. We outline various methods for establishing net oxidizing or net reducing reaction environments and propose solvents with minimal overall production of radicals under the electron beam. Exemplary liquid cell electron microscopy experiments in the fields of nanoparticle nucleation, growth, and degradation along with recommendations for best practices and experimental parameters are reported. We expect this review will provide researchers with a useful toolkit for designing general chemistry and materials science liquid cell electron microscopy experiments by 'directing' the effect of the electron beam to understand fundamental mechanisms of dynamic nanoscale processes as well as minimizing radiation damage to samples.

  • 出版日期2017-2