摘要

In an abrasive chemical mechanical polishing (CMP) process, materials were considered to be removed by abrasive sliding and rolling. Abrasive sliding has been investigated by many molecular dynamics (MD) studies; while abrasive rolling was usually considered to be negligible and therefore was rarely investigated. In this paper, an MD simulation was used to study the effects of abrasive rolling on material removal and surface finish in the CMP process. As the silica particle rolled across the silicon substrate, some atoms of the substrate were dragged out from their original positions and adhered to the silica particle, leaving some atomic vacancies on the substrate surface. Meanwhile, a high quality surface could be obtained. During the abrasive rolling process, the influencing factors of material removal, e. g., external down force and driving force, were also discussed. Finally, MD simulations were carried out to examine the effects of abrasive sliding on material removal under the same external down force as abrasive rolling. The results showed that the ability of abrasive rolling to remove material on the atomic scale was not notably inferior to that of abrasive sliding. Therefore, it can be proposed that both abrasive sliding and rolling play important roles in material removal in the abrasive CMP of the silicon substrate.