摘要

Under natural conditions, natural gas hydrate occurs in the pores of porous media found in the sedimentary layer. Thus, the rapid formation and basic properties of the hydrate in the porous medium must be studied. Quartz sand with different particle sizes compounded with Sodium Dodecyl Sulfate solution was used to study the hydrate formation in the system at 275.15K and 6MPa under a saline environment. Results were as follows. 1) Methane gas uptake in a saline system with NaCl concentration of 50mmol was higher than that in pure water. This finding indicated that although the salt is a thermodynamic inhibitor, low concentration of NaCl can promote the formation of hydrates. 2) In the initial stage of the experiment, the rate of hydrate formation in saline environment was significantly higher than that in pure water. After approximately 1h, the formation rate of hydrate in the compound system decreased under a saltwater environment and was lower than that in the complex system under pure water. 3) The hydrogen bond network inside the high-concentration NaCl solution was seriously damaged. In this case, water molecules cannot easily form a cage structure, and the presence of chlorine ions weakens the stability of a small amount of formed hydrate cage, thereby further inhibiting the formation of hydrates. However, in the low-concentration NaCl system, mass transfer is improved, and the formation of hydrate is promoted because of the weakened hydrogen bonding at the gas-liquid interface.