Substrate-Regulated Growth of Plasma-Polymerized Films on Carbide-Forming Metals

作者:Akhavan Behnam*; Wise Steven G; Bilek Marcela M M
来源:Langmuir, 2016, 32(42): 10835-10843.
DOI:10.1021/acs.langmuir.6b02901

摘要

Although plasma polymerization is traditionally considered as a substrate-independent process, we present evidence that the propensity of a substrate to form carbide bonds regulates the growth mechanisms of plasma polymer (PP) films. The manner by which the first layers of PP films grow determines the adhesion and robustness of the film. Zirconium, titanium, and silicon substrates were used to study the early stages of PP film formation from a mixture of acetylene, nitrogen, and argon precursor gases. The correlation of initial growth mechanisms with the robustness of the films was evaluated through incubation of coated substrates in simulated body fluid (SBF) at 37 for 2 months. It was demonstrated that the excellent zirconium/titanium-PP film adhesion is linked to the formation of metallic carbide and oxycarbide bonds during the initial stages of film formation, where a 2D-like, layer-by-layer (Frank-van der Merwe) manner of growth was observed. On the contrary, the lower propensity of the silicon surface to form carbides leads to a 3D, island-like (Volmer-Weber) growth mode that creates a sponge-like interphase near the substrate, resulting in inferior adhesion and poor film stability in SBF. Our findings shed light on the growth mechanisms of the first layers of PP films and challenge the property of substrate independence typically attributed to plasma polymerized coatings.

  • 出版日期2016-10-25