摘要

The respiratory rhythms of Japanese medaka is considered to be an efficient indicator for monitoring water quality since they are sensitive to chemicals and can be measured directly from the movement of fish gill tissue generated by their breathe. However, few methods have been established to measure the feature of small free-swimming fish intuitively. In this article, a method is proposed to measure the influence of the pollution to the Japanese medaka's respiratory rhythms with computer vision technology in real time. In order to get the images which contains the complete gill tissue remotely and steadily, a special object container and an experiment platform are designed. With the aim of capturing Japanese medaka's respiratory rhythms in real time, a set of image processing algorithms such as the color distribution table, Support Vector Machine (SVM), adaptive boosting (Adaboost) and mathematical morphology are applied. Then, in order to verify the effectiveness and accuracy of the whole method, fourteen groups of Japanese medakas are respectively exposed to copper ions solutions with different concentrations of 0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 mg/L for 48 h. The comparison between the human eyes observation and the above method indicates that the data obtained through the method is generally accurate. We found that the respiratory rate of Japanese medaka showed a downward trend initially when exposed in the copper ions solution, afterwards fluctuated repeatly arounding the lower rate, before death, the respiratory rate rised slowly for a while. With the increase of concentration, this trend will be more obvious. But the above phenomenon is absolutely different from that in the standard dilution water. Moreover, the two kinds of special respiratory rhythm of medakas poisoning were discovered. This method can be widely applied to study some toxic substances' effects on Japanese medaka's respiratory rhythms and to assess the degree of risk of the water environment.