摘要

Skeletal muscle formation, growth and repair depend on myoblast fusion events. Therefore, in-depth understanding of the underlying molecular mechanisms controlling these events that ultimately lead to skeletal muscle formation may be fundamental for developing new therapies for tissue repair. To this end, the greatest advances in furthering understanding myoblast fusion has been made in Drosophila. Recent studies have shown that transient F-actin structures, so-called actin plugs or foci, are known to form at the site of contacting myoblasts. Indeed, actin regulators of the WASP family that control the activation of the Arp2/3 complex and thereby branched F-actin formation have been demonstrated to be crucial for myoblast fusion. Myoblast-specific cell adhesion molecules seem to be involved in the recruitment of WASP family members to the site of myoblast fusion and form a Fusion-Restricted Myogenic-Adhesive Structure (FuRMAS). Currently, the exact role of the FuRMAS is not completely understood. However, recent studies indicate that WASP-dependent F-actin regulation is required for fusion pore formation as well as for the correct integration of fusing myoblasts into the growing muscle. In this review, I discuss latest cellular studies, and recent genetic and biochemical analyses on actin regulation during myoblast fusion.

  • 出版日期2009-3